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Transition Amplitude Spaces and Quantum Logics with 
Vector-Valued States 
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Relations between transition amplitude spaces and quantum logics are studied. 
It is shown that transition amplitude spaces correspond to quantum logics with 
rich enough sets of vector-valued states. 

1. I N T R O D U C T I O N  

The not ion o f  a transit ion ampli tude space (tas) was in t roduced in 
G u d d e r  and  Pulmannov~i (1987) (see also Gudder ,  1988). It i sde f ined  as 
follows: Let S be a n o n e m p t y  set and let A: S x S ~  C. We say that  x, y e S 
are o r thogona l  (a  _1_ b) if x r y and A(x,  y) = 0. We call a set M c S an 
A-set  if for  every x, y e S, 

y~ IA(x, z)fii(y, z ) ] < ~ ,  
z ~ M  

and 

A(x,  y) = • A(x,  z),4(y, z) 
z ~ M  

Denote  the collection o f  A-sets by NA. We call A:  S • S-~ C a transit ion 
ampl i tude  if (i) NA ~ f~ and  (ii) A(x,  x) = 1. I f  A is a transit ion ampli tude,  
we call (S, A) a transit ion ampli tude space. We then have A(x,  y) = A(y, x). 
A strong (ultrastrong) tas is a tas (S, A) which satisfies A(x, y ) =  l ~ x  = y  
[IA(x,y)]= l ~ x = y ] .  A tas (S, A) is total if every maximal  o r thogona l  
subset o f  S is an A-set. G u d d e r  and Pulmannov~i (1987) proved that every 
tas admits  a representat ion,  i.e., there exist a Hilbert space H and a map  
4~: S ~  H such that A(x,  y)  = (4~(x), ~b(y)) for  every x, y ~ $. The map  0b is 
injective if and only if the tas is strong. 
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Let (S, A) be a total tas. Define a relation R on S by xRy if IA(x, Y)I = 1. 
Then R is an equivalence relation and (S/R,  T), where T(x ,y)= 
IA(x, y)l 2, is a transition probability space (Gudder and PulmannovS., 1987, 
Theorem 2.2). 

Recall that a couple (S, T) is a transition probability space (tps) if S 
is a nonempty set and T: S x S ~  (0, 1) satisfies: 

(i) T(x,y)=lCr>x=y. 
(ii) T(x, y) = T(y, x) for any x, y e S 

(iii) Calling x and y orthogonal (x 3_ y), if T(x ,y)=0,  we have 
Y~y~M T(x, y) = 1 for every maximal set M of  pairwise orthogonal elements 
of  S and every x ~ S. A map T with the properties (i)-(iii) is called a 
transition probability and (S, T) is a transition probability space (Mielnik, 
1968, 1969). 

Recall that a quantum logic is a partially ordered set L with 0 and 1, 
with an orthocomplementation ': L ~  L such that: 

(i) ( a ' ) ' =  a. 
(ii) a<-b~b'<-a '. 

(iii) a v a ' = l , a ^ a ' = O .  
(iv) Calling a, b c L orthogonal if a <- b', ~ /~u a~ exists in L for every 

sequence (ai);~u of pairwise orthogonal elements of L. 
(v) a < - b ~ b = a v ( a '  ^b). 

A logic L is orthocomplete if v~1 a~ exists in L for any set (a i ) i~ of  
pairwise orthogonal elements in L. A state on L is a map s : L ~ ( 0 ,  1) such 
that s(1) = 1 and s(a v b) = s(a)+s(b) for any a, b ~ L, a 3_ b. A state s on 
L is or-additive (completely additive) if S(V~N aj)=Y.~N s(a~) for any 
sequence (ai)g~N of pairwise orthogonal elements of L [ s (v ~ l  a~)= 
~i~x s(a~) for any set (a~)i~ of pairwise orthogonal elements of  L such that 
v~1 a~ exists in L]. 

An element a c L is a carrier of a state s if s(b) = 0r b 3_ a. An element 
x c L  is an atom if y6  L, y < - x ~ y = O  or y = x .  A logic L is atomistic if 
every element in L is the supremum of all atoms lying under it [see Gudder  
(1979), Beltrametti and Cassinelli (1981), and Varadarajan (1985) for the 
basic facts about quantum logics]. 

Relations between transition probability spaces and quantum logics 
have been studied by several authors (e.g., Belinfante, 1976; Bugajska, 1974; 
Deliyannis, 1984; Pulmannov~, 1986a, b). It has been shown that transi- 
tion probability spaces [with a weaker symmetry property T(x, y)= 0r 
T(y, x) = 0 replacing the symmetry condition T(x, y) = T(y, x)] are in one- 
to-one correspondence (up to isomorphisms) with atomistic, orthocomplete 
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quantum logics such that to every atom a of the logic there is a unique 
completely additive state with the carrier a. I f  (S, T) is a tps, the correspond- 
ing quantum logic is constructed as follows. For any A c S, put A •  
{y ~ S I T(x, y) = 0 for all x ~ A}, and ,4 = A zz. Then the logic L = {/~ I E is 
an orthogonal subset of  S}. For any x e S, g = x, and x is an atom of L. In 
addition, for every x~S ,  the map sx:L-~(0,1} defined by Sx(/~) = 
Y,y~E T(x,y) defines the state with the carrier x (Deliyannis, 1984; 
Pulmannovfi, 1986a, b). 

2. A Q U A N T U M  L O G I C  C H A R A C T E R I Z A T I O N  OF TAS'S 

We shall investigate a class of  quantum logics which characterize total 
transition ampli tude spaces. Let L be a quantum logic and let H be a Hilbert 
space. An H-va lued  (o-addit ive) state on L is a map ~: L--> H such that: 

(i) For any a, b c L, a • b we have (~:(a), ~:(b))=0 and ~:(a v b ) =  
~(a)+~(b). 

(ii) For any sequence (ai)ieN of pairwise orthogonal elements of  L 
we have ~(Vi~Nai)=Y~i~N ~(ai), where the sequence converges in norm 
in /4. 

(iii) 1. 

An H-va lued  state s ~ on L is completely additive if for any set (ai)~ of 
pairwise orthogonal elements of  L such that v~a~ exists in L, we have 

~(vi a i )  = ~,i /~( ai). 
It is clear that if ~: is an H-va lued  state on L, then the map a~,ll~:(a)ll 2 

is a real-valued state on L, which is completely additive if and only if ~: is 
completely additive. 

H-valued  states on logics have been studied by several authors (e.g., 
Dvure6enskij and Pulmannovfi, 1981; Hamhal ter  and Ptfik, 1989; Jajte and 
Pazskiewcz, 1978; Kruszynski, 1988; Mayet, 1987). The following statement, 
proved in Kruszynski (1988), will be especially useful in the sequel. Before 
formulating it, we need several definitions and remarks. 

Let ~:, ~ be H-va lued  states on L. We say that s ~ and , / a r e  biorthogonal 
if  for any a, b ~ L, a • b, we have ~(a) • 7/(b). It is easy to check that s ~ 
and ~7 are biorthogonal if  and only if (~r162  is also 
an H-va lued  state on L for any a,/3 ~ C. 

A family W of H-va lued  states is a biorthogonal family if every two 
states ~:, u c W are biorthogonal.  A biorthogonal family W is maximal if 
every H-va lued  state on L which is biorthogonal with every element of  W 
belongs to W. Owing to the Zorn lemma, any biorthogonal family is con- 
tained in a maximal one. 
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Theorem I (Kruszynski, 1988). Let 2r be a biorthogonal family of 
H-va lued  states on a logic L. Then there is a map ~:  L-~ L(H) [where 
L(H) is the projection logic of  H ]  such that: 

(i) ~(a)~(a)= ~:(a) for every ~ e N  and all aeL .  
(ii) a, beL ,  a < - b ~ ( a ) < - ~ ( b ) .  

(iii) a, b e L, a _l_ b ~ ~(  a ) 3_ ~(  b ) and for every sequence ( ai)i~N of  
orthogonal elements of  L, qt( v ,~ u ai) = Y.~ N ~ ( a i  ), where the series conver- 
ges in strong operator  topology on H. If, in addition, all the elements in .N" 
are completely additive, ~ ( v i  a~) = Y~ qt(ai) for any orthogonal set (a~)~ c L. 

(iv) To every ~:eN, there exists a vector v~:eH such that ~:(a)= 
�9 (a)vr a e L. 

Note that ~ ( a )  is the projection onto the closed subspace No(a)= 
{c. ~:(a) I~ e Xo, c e C}, where No is a maximal biorthogonal family contain- 
ing N. As a consequence of the above theorem, we obtain that the map 
is a o r thohomomorphism of L into L(Ho), where Ho is the subspace 
corresponding to ~(1) .  As xtt(a)v~=~(a)q2"(1)vr we may suppose that 
v ~  Ho(~  N). 

Theorem 2. Let (S, T) be a transition probability space. Then there is 
a transition amplitude space (S, A) such that T(x, y) = IA(x, y)l 2, x, y e S, 
if and only if there is a Hilbert space H and a map do : S-* H such that 
T(x, y) = I(do(x), do(y))l 2 for any x, y e  S. 

Proof Let (S, A) be a tas such that T(x, y) = IA(x, y)[2, x, y e S. As 
every tas admits a representation, there is a Hilbert space H and a map 
do:S--> H such that T(x, y) = IA(x, y)l 2 --I(do(x), do(y))l 2 for any x, y e S. 

Now let there be a Hilbert space H and a map do:S-> H such that 
T(x, y) = ](qb(x), do(y))l 2, x, y e S. Put A(x, y) = (do(x), do(y)), x, y ~ S. Then 
A(x, x) = Ildo(x)ll= = [T(x, x)] "= = 1. Let M c  S be any maximal orthogonal 
subset. Then d0(M) is an orthogonal subset of  H ~, and since 

1= E T(x ,y )= E I(do(x) ,do(y))12=lldo(x)l l  ~ 
ycM yeM 

for every x e S, we get Ildo(x) - Y , ~  (do(x), do(y))do(y)ll = 0. Hence do(x) = 
~y~M (do(X), do(y))do(y) for every x e S. Therefore, 

A(x, y) = (do(x), do(y)) 

= E (do(x),do(z))(do(z), do(y)) 
z~M 

= Z A(x , z )a (z , y )  
zr 

-= E a(x, z),4(y, z) 
z~M 
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Hence M is an A-set. This proves that (S, A) is a tas. �9 

Now we are able to state and prove our main result. 

Theorem 3. Let (S, T) be a (symmetric) transition probabili ty space 
and let L be the corresponding logic. Then there is a total transition 
ampli tude space (S, A) such that T(x, y) = IA(x, y)l  2 if and only if there is 
a Hilbert space H such that: 

(i) To every x ~ S, there is an H-va lued  state sex : L -  H such that 
sx(a) = IIr  2, a ~ L, where sx is the unique state on L with the carrier x. 

(ii) The set {~:x[x ~ S} forms a biorthogonal family of  H-valued  states 
on L. 

(iii) The set ( r  ~ M }  is an orthogonal base of  H for any maximal 
orthogonal subset M of  S. 

Proof (1) Let (S, A) be a total tas such that T(x, y) = IA(x, y)l 2, x, y e S. 
Let L be the logic corresponding to (S, T). It is easy to check that L is 
isomorphic to the event structure of  the tas (S, A) (Gudder  and Pulmannov~i, 
1987, Theorem 4.10; Pulmannov~i and Gudder,  1987, Corollary 1.4). Let 
�9 : S ~  H be a representation of (S, A). Then A(x, y) = (~(x) ,  dp(y)), x, y c 
S. This representation yields an or thohomomorphism ~ : L ~ L ( H )  [see 
Gudder  and Pulmannov~i (1987), remarks before Theorem 4.10]. For every 
x c S, define ~:x(a)= XP(a)dP(x), a ~ L. Then sex : L ~  H is an H-valued state 
on L. Let a ~ L and let a = /~  (i.e., E is a maximal set of  orthogonal atoms 
contained in a - - t h e  event corresponding to a).  Then we have 

sx(a) = Y. T(x, y) 
y~E 

-- Y [ ( ~ ( x ) , , I , ( y ) ) [  2 
ycE 

= ~ (Peg(y)(lb(x), (I)(x)) 
y~E 

- - [ l ( ~ ( a ) ~ ( x ) ) l l  ~ 

= II~x(a)ll 2 

[Here Pcib(y) denotes the projection on the one-dimensional subspace of  H 
generated by ~(y) .  We have Y.y~e P~(y)=Xlt(a).] This proves (i) of  the 
theorem. Part (ii) is straightforward. To prove (iii), let M be a maximal 
orthogonal subset of  S. For any z~  M, we have ~ :z(1)=xI t (1)~(z)=~(z) .  
As ~ : S ~  H is a representation, ~ ( M )  is a base in H. 

(2) Let (S, T) be a tps, L be the corresponding logic, and suppose that 
(i)-(iii) are satisfied. By Theorem 1, there is an or thohomomorphism ~ :  L ~  
L(H) ,  such that ~x(a)=~(a)vx ,  where v~ is a vector in H. We show that 
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�9 (x) is one-dimensional for every x ~ $. (We identify the atoms in L with 
the elements of  $.) Indeed, let M be a maximal orthogonal subset of  S 
such that x~M.  As 1 = s~(x)=  II x(x)ll2= II,I,(x)vxll 2, we have vxc~(x) .  
Let v ~ ( x ) ,  v •  vx. For any z~M,  z ~ x ,  we have II, (X)vzll2=sz(X)= 
T(z, x) =0;  hence ~ ( x )  • vz, and hence vz • v. Now ~:z(1) =q~(1)vz = vz; 
hence {v~[z~ M} is a base in H. This implies that v = 0 .  Hence ~(x)vy = 
(Vy, v~)v~. For x, y ~ S, define A(x, y) = (Sex(l), SOy(l)) = (v~, Vy). We obtain 

Ia(x, y)12= [(Vx, v~)l 2= II'I~(y)v~ l[ ~-- I[~x(y)ll 2= s~(y)= T(x, y) 
If we put qb(x) = v~, we obtain by Theorem 2 that (S, A) is a tas. �9 
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